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Orbital Equations in a Weak Gravitational Field 
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With the obtainment of the Synge equations of motion in third approximation 
for a test particle, we determine the relativistic force in the field generated by a 
massive body obtained previously in terms of its potentials. Afterwards, in order 
to study the motion, we obtain the integral of energy and the integral of angular 
momentum. By means of them, the general form for the trajectory of an equatorial 
orbit and for the advance of its apsidal line are obtained. As we will se~, the 
known diverse contributions for this advance appears in the general form after 
strong supplementary conditions on the potentials. As application, with such 
assumptions these contributions are derived in a unified way. 

1. I N T R O D U C T I O N  

In an ear l ie r  p a p e r  ( G a m b i ,  1983), Synge ' s  a p p r o x i m a t i o n  m e t h o d  has 
been  a p p l i e d  to ob ta in  the  weak  grav i ta t iona l  field o f  a mass ive  b o d y  with 
an axis o f  symmet ry  a r o u n d  which it is ro ta t ing  s teadi ly  (Synge,  1970). The 
m e t h o d  was car r ied  out  to inc lude  the second  a p p r o x i m a t i o n s ,  which  is 
enough  to ob ta in  t h i rd -o rde r  equat ions  o f  mot ion .  This means  that  te rms 
o f  o rde r  m 2 are r e t a ined  as signif icant  and  tha t  there  is an er ror  o f  o rde r  
m 3 in the  field equat ions ,  m being  the mass  o f  the body .  

The  resul t  is more  soph i s t i ca t ed  than  the one ob t a ined  in the s t a n d a r d  
p o s t - N e w t o n i a n  a p p r o x i m a t i o n  (Chand ra sekha r ,  1965; Weinberg ,  1972) 
because  the  O ( m  2) te rms in the s e c o n d - o r d e r  devia t ions  y ~  [(6) be low]  

2 

are expl ic i t ly  d e t e r m i n e d  and  the same h a p p e n s  with the O ( m  5/2) terms o f  

T~4. 
2 

The p u r p o s e  o f  the  presen t  work  is to use the whole  metr ic  ob t a ined  
in G a m b i  (1983) in o rde r  to der ive the  con t r ibu t ions  o f  these  terms to the  
mot ion  o f  a smal l  b o d y  or  test part icle .  
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In order to this, in Section 2 the results of Gambi (1983) relevant to 
the present work are briefly summarized. Next, in Section 3 we obtain first 
the orbital equations in third approximation for any stationary weak gravita- 
tional field and afterwards the corresponding ones to the particular case 
which we are considering. Next, taking into account that, owing to the 
characteristics of the field, there are two first integrals of motion, namely, 
the energy One and the one of angular momentum, inSect ion 4 we get the 
first one and in Section 5 we get the second one. These integrals depend 
not only on the classical Newtonian potential and on the potential of  rotation 
but also on the stress of the body. Using them, supposing that the generating 
body has an equatorial plane of symmetry, in Section 6 the general equation 
for the trajectory of an equatorial orbit and the value for the advance of  
its perihelion are obtained. The known advances are particular contributions 
of this advance. Assuming that the deviation of the massive body with 
respect to sphericity is small (in a technical sense) and that the potentials 
due to stress and rotation are almost inversely proportional to the distance, 
these contributions can tiaen be obtained. As application of the general 
form we derive them jointly. 

2. THE GRAVITATIONAL FIELD 

The weak gravitational field which we are considering is generated by 
a massive body rotating steadily around its axis of symmetry. 

Assuming as topology of space-time the one of a Euclidean 4-space, 
taking coordinates xa(a = 1, 2, 3, 4) in such a way that x~,(/x = 1,2, 3) are 
rectangular Cartesian coordinates and x4 = it, and choosing as axis of 
symmetry the Ox3 axis, we have 

U U 
Ul = - - x 2 ,  u2 = - x l ,  u3 =0,  u4 = i, (1) 

r r 

au~ = O, ap= 0 (2) 
ot ot 

u~ = o(Kl/2) ,  p = O(K) (3) 

where u,,(a = 1, 2, 3) and u are, respectively, the Eulerian 3-velocity and 
the velocity of the body satisfying u =~ u(r, x3)(r 2= x2+x2) ,  and p = p(r, x3) 
is its Eulerian density. K is the small dimensionless parameter of the same 
order of the mass of the body which constitutes the basis of the approxima- 
tion. All magnitudes are measured in seconds. 

Denoting by I the history of the world tube (supposed simply con- 
nected) corresponding to the body and by E the part of space-time exterior 
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to I, if  the energy tensor  [which is given by 

T ~ = p % u ~  - S ~ ,  T v'4 = ip%,  T 44 = - p  < 0, in I 
(4) 

T ab = 0, in E 

where S~.~ = O (K 2) is the Eulerian stress of  the body]  is such that the Eulerian 
equat ions of  mot ion are almost satisfied, i.e., if 

du----e~ - S = pV.~ + O(K 3) 
P dt *'~'~ 

(5) 

~ t  -]- pulz Ix = O (  K 7/2) 

then the metric deviations of  second order  Y~b (a, b = 1, 2, 3, 4) with respect 
2 

to the Minkowskian metric 6~b are given by 

%,~ = 2( V +  V2)6~,~ - 2xJ[(  p%u~)*]  
2 

+ 4J[�89 + ( V2),~ - V,~ V,~] + O (K 3) 

Y.4 = - 2 x i J ( p u . )  - 8iJ(  V,,~W~,. - V , .~W~ (6) 
2 

+ W~A V -  W W~) + o(,,~/% 

")/44 = - 2 (  V -  V 2) - xJSr162 + x J (pu , ,u r  + O( K 3) 
2 

where 
f 

J [ f ( x ,  t ) ] = -  (47r) -~ / f ( x ' ,  t)lx-x'1-1 d3x' 
i #  

, _ _  1 S ~ -  s ~  - ~ s ~ o ,  (pu~u~)* = (pu~u~) - � 8 9  2 

V is the Newtonian  potential  

and 

~ = 8'n" 

(7) 

V =  - 4 7 r J ( p )  (8) 

W~, = -4or  J ( p % )  (9) 

Thus we have a universe which contains a body  of  arbitrary shape with 
the only restriction being that  it possess an axis of  symmetry a round  which 
it is rotating with small velocity, u~. = O(K ~/2), in its own gravitational field; 
the density p is small, O(K). The energy tensor  is given by (4), where S~,~ 
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is the Newtonian stress under gravity. S~v satisfies (5) and is O ( K 2 ) .  The 
metric tensor is 

gab = (3ab + Y~b (10) 
2 

where Y~b is given by (6). 
2 

The distant field corresponding to this universe is given by 

g ~ , ~ = 6 ~ + 2 ~ ( m + m ' ) r  l, g 4 4 = l _ 2 ( m + m , ) r - 1  
(11) 

g 1 4  : 2 i x 2 r - 3 J 3 ,  g24 = --2ix1 r - 3 J 3 ,  g 3 4  = 0 

where m and J3 are the mass and the angular momentum (with respect to 
Ox3) of the body and m' = I pVd3x' is the mass of the field. 

3. T H E  ORBITAL E Q U A T I O N S  

The fact that gravitational fields are shown geometrically leads in a 
natural way to establish the geodesic hypothesis as the basic law of motion 
for test particles. In this way its motion is determined only by the potentials 
of the massive body or bodies which generate the field. So, it is possible to 
speak about the substratum metric produced by these bodies and is in this 
metric where the geodesic hypothesis is applied. 

To begin with all generality, let us make no initial assumption about 
the form of the metric gab. Accordingly with the geodesic hypothesis, orbits 
satisfy the equations 

= Fm.xmxr = iO (12) 5i o + F ~.2, .2r 020, 4 �9 �9 
2 2 

where F~ .  are the Christottel symbols of second kind, 0 is a Lagrange 
2 

multiplier, and 
2 o = u. = O(K 1/2) (13) 

The first three equations (12) are equivalent to 

lip +F~vu~u~+2lF~4u~P �9 o -F~4 = Ou. (14) 
2 2 2 

Now, if the field is stationary, by a straightforward calculation the 
Christoffel symbols become 

p - -  1 p~ 1 p 4  
F ~ - ~ g  [ g ~ . ~ + g ~ , ~ - g ~ , ~ ] + ~ g  [g~4,~+g~4,~.] 
2 

p __ 1 pc~r 1 ,o4 
F~.4-~g tg4~,~-g~a,~]+~g g44,~ (15) 
2 

to4 = 2~ ,S 44,o~ 
2 
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and substituting (15) in (14) we get 

1 p a  1 p 4  
fip+{~g [g~,~,. + g~,~ - g~.~,~]+~g [g~4,4 q- g~4,~]}U,~Uu 

�9 1 po~ 1 p 4  1 p a  
+ 2 t { s g  (ga,~,.-g4.,,~)+~g g44,,a}u~q-gg g44,,~=Ouo (16) 

If we now suppose  that the metric g.~ has deviations Y~b = 0 ( ~  2) these 
equations are reduced to 2 

~i o + + y.p,~ + y~..p - yp~ Y ~ , .  - yp~, Y ~ , ~  
2 2 2 2 2 2 2 

-~- "Yp~ "~/~v.~ ) -- �89 "Y4p "Y4~, v + ")/4p ')/4 u,~ ) l  U/~U. 
2 2 2 2 2 2 

q- i( 'Y4p,~ - -  "Y4p.,p - -  'YOc, Y4a,~.  q-  ~/pa'~4k~,c~ - -  'Yp4'~44,k~) Up~ 
2 2 2 2 2 2 2 2 

-~- l ( ' Y 4 4 , p  - -  'Yp~'Y44,~r = OUp ( 1 7 )  
2 2 2 

N o w ,  in order to obtain equations o f  mot ion in third approximation 
we eliminate only the terms that, with all surety, are O(K3). Thus equations 
(17) are reduced to 

�9 1 1 1 
U 0 "f- 2"Y44,p - -  2 Y p a  'Y44,a  q- 2( ~ll~p, u "~- ~/up, p, --  ~lkep, p) U l ~ u  

2 2 2 2 2 2 

+ i(y@,~- y4~,o)u~ = Oup (18) 
2 2 

Back now to the fourth equation (12), we get for his corresponding 
Christoffel symbols  

F 4 v 1 4p 1 44 =~g [g,~p,,,+g~.,~-g.,,;]+~g (ga~.,.+g4..,~) 
2 

4 1 4 a  1 4 4  
F ~ 4 = g g  [g4or g44,~ (19) 
2 

with that on 

F 4 4  = ! 4 ~  - 5g g44,~ 
2 

substituting in it, it results 

1 4Or _{_ 1 44 

_[_ " 1 4 a  1 44 2~[~g (g~,~-g~,o)+~g g~n~]U~ 
1 4 p  

+ ~g g44,p iO (20) 
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Int roducing now the metric deviations, we have 

[�89 - 'Y4p)(~//~p,~, J- "Yvp, lz - ~/~v,.o) 
2 2 2 2 

"q-�89 -- ~/44)('y4.,p -]- 'y4u,/~)]/.//z'U~, 
2 2 2 

+ 2i [ �89  - Y 4 . ) ( T 4 ~ , .  - y 4 . . ~ )  + �89 - Y44)Y44, .]u .  
2 2 2 2 2 

+�89 - Y4p)(Y44,o) = iO (21) 
2 2 

and, on taking away the terms which surely a r e  0 ( / ( 3 ) ,  it becomes 

iO = y,o.4,~Ul.LU~ "~ i'Y44,~ (U~z 1 - -  "}/44U,~ ) - -  2~04 'Y44 ,p  
2 2 2 2 2 

Now, multiplying (22) by iut3 and simplifying, it results in 

(22) 

Oufl  = ~44,~U~Ufl -~- O ( K  3)  ( 2 3 )  
2 

and carrying this equat ion to (18) we obtain 

�9 1 1 1 
Up "Jv 2 Ye4,p - -  2 Ypot Y44, o~ "4- 2 ( YIzO,~, q- Y~,p,I,L - -  "~ o.v.p ) Utz l'lu 

2 2 2 2 2 2 

+ i(y4p.~ - y4~,p)u~ = Y44,~u~.u o + O(• 3) (24) 
2 2 2 

The final form of  the equations depends  of  the field in which the test 
particle is moving�9 If  one wishes to study the mot ion at great distance, it 
is enough to consider  only the field (11), but  this involves the missing in 
the mot ion  descript ion of  some elements which characterize the generat ing 
body  [as seen in (11) the stress tensor  has not  survived to describe the field]. 
This is the reason that is better  to use the whole metric (10). Carrying then 
( i0)  to (24) and neglecting O(K 3) terms, it results in 

ftp - V p  + 2 V V  p - �89 (JSo-,,),p + �89 pu~u~)],p 

+ �89 V6.p),~ + (2 V3~p),. - (2 V 3 . ~ ) , p ] u ~ u .  

+ i { [ - 2 x i J (  pup)],~ + [2xiJ(  p u . ) ] , p } u .  = - 2  V,~u~.up + O(K 3) (25) 

and from here, taking into account  (9), we have 

ti o = V.p + V.p(u 2 - 4 V )  - 4u09"+ Po - O.o 

+4 (  Wp,~ - W . , o ) u  ~ + O(K 3) (26) 
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where 

and 
P '  I ' = - )lx-x'l-' d3x' (27) 

O : = - I pu u lx- x'l-' d3x' (28) 

P is therefore the stress-trace potential of the body and is the one due  
to its rotation. 

Writing equations (26) in the form 

uo = V,p + F, (29) 

we see in the first term the Newtonian force per unit mass. The rest 

F o = V,o(u2- 4 V) - 4 u ,  l?+ Po - Q,, 

+4(  Wo. ~ - W~.o)u ~ + O(x!)  = O(K 2) (30) 

is the relativistic perturbing force per unit mass. This force not only depends 
on the classical potential V, on the test particle velocity, and even on the 
body's rotation, but also on its own body stress. 

(26) is Synge's third-order equation of motion for a test particle. That 
this is true can be verified by imposing supplementary conditions on his 
equations [see (1.61), (1.62), and (1.63) of Synge, 1970]: (i) Consider only 
Synge's equations for the motion of two bodies; (ii) one of the bodies is 
very small with respect to the other; (iii) this second body is later in steady 
rotation. By imposing the conditions one can ignore the self-potentials and 
stress in the small body and vanish the terms in which derivatives with 
respect to t appear in the other body. Then doing this we obtain in a 
straightforward way equations (26) but at the same time, which is important, 
we verify the geodesic hypothesis on his equations for the case which we 
are considering. The generality with which the field has been obtained has 
been what has allowed, in short, to get the equations (26) of which, on the 
other hand, the traditional ones, which correspond to the field (11), are a 
particular case. 

4. THE INTEGRAL OF ENERGY 

Accordingly with what was previously said, in the part of space-time 
exterior to the world tube of the body, orbits satisfy the equations (12) or, 
what is the same, the Lagrangian equations 

d OL OL 
- -  - 0  ( 3 1 )  

dt O ~  Ox~ 
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where 

L = (-g~,.YcSc~ -2ig~42~ + g44) '/2 (32) 

Now, by the conditions (2), these equations have the first integral 

OL 
L -  x~02~ = 1 + E (33) 

where the constant E is the total energy per unit mass of the test particle. 
From (33) it results in 

~[ 2 1 OL2\ 
L-  I L  - - 2 ~ - - 1  - 1 = E (34) 

\ 2 O~ ] 

and by (32), it becomes 

L- l (  - ig~42~ q- g 4 4 )  - -  1 = E 

Then carrying (10) to (35) we have 

(35) 

it results in 

3'.~ = O ( K ) ,  y . 4 =  O(K3/2) ,  3,44 = O ( K ) ,  2~ = u .  = O(K 1/2) (37)  
2 2 2 

where as before u 2= u~u~. 
Substituting now in (36) the deviations (6) and taking into account that 

( /U2 - -  V )  - -  �89162 Jv I x . J (  p U  2 ) 

3 4 3 2 1 2 +~u +~u V+~V +O(K 3)=E (38) 

As it is seen, the principal part of (38) is the Newtonian total energy 
per unit mass, as the corresponding potential energy is - V, not V. According 
to (36), (3), and (8), this part is O(K) and the rest of the left-hand side of 
(38) is O(K2). So, retaining only the principal part in (38), we have 

�89 2 - V+ O(K 2) = E (39) 

Then, applying (39), the integral of energy can be written in the following 
way: 

( � 8 9 1 8 9 1 8 9  (40) 

in it directly only the magnitudes which characterize the space-time con- 
sidered. 

E = �89 Y44)+�89 q - l ( U 2 - -  3'44)(3U2 q - 3'44) -~ O(b~3) (36) 
2 2 2 2 
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5. THE INTEGRAL OF ANGULAR M O M E N T U M  

When a test particle moves in the gravitational field of a body in 
stationary motion, generally all that can be assured is the existence of the 
integral of energy discussed in the preceding section. But if the body has 
an axis of symmetry, the azimuthal angle 4, is a cyclic coordinate and the 
angular momentum is kept, i.e., 

aL 
--== - A  (41) 
o4, 

where the constant A is the angular momentum per unit mass of the test 
particle. 

Going to Cartesian coordinates x ,  (in such a way, as was said in 
Section 2, that the axis of symmetry is Ox3), (41) is reduced to 

OL OL 
- - -  x 2 - -  = - A  ( 4 2 )  

Xl a ~  2 a N  1 

or to 

1 l /  OL 2 OL2\ 
- ~ L - ~ x , ~ 2 - X 2 ~ l ) = A  (43) 

and from here, to 

L- l[x lg2~xt~  - x 2 g l . ~  . d- i ( x l g 2 4  - x 2 g 1 4 ) ]  = A (44) 

Imposing now the conditions of weakness and of slow motion we have 
as before (37). Then (44) is reduced to 

(1  + lu2 - �89 1,/2 - X2Ul ) "]- (X l  'Y2/.~u/L - x2~ll.u.ui.L ) 
2 2 2 

+ i (x ,  "Y24 - x2")/14) -~ O(K5/2)  = A ( 4 5 )  
2 2 

and substituting (6) in (45), we have 

(I+�89 (46) 

On the other hand, as 

u e = 2(E + V) + O(K 2) (47) 

accordingly with (38), then substituting (47) in (46) it results 

(lq-E+4V)(XlU2-X2Ul)-4(XlW2-X2WI)A-O(KS/2)=A (48) 
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In order to obtain a similar expression to the well-known Newtonian 
one, we make the transformation to cylindrical coordinates 

Xl = R cos ~b, x2 = R sin q5 (49) 

In this way (48) is reduced to 

(I+E+4V)R2~-4(x~W2-x2WO+O(KS/2)=A (50)  

But as 

it results 

and finally 

AE = ER2 dp + O(K 5/2) (51) 

(I+4V)R2(b-4(x, W2-x2W~)+O(KS/2)=A(1-E) (52) 

R2~ = 4(xl W2-  x2 WI) + h[ 1 - 4 V+  O(K2)] 

where h = A(1 - E). 

(53) 

6. THE TRAJECTORY OF AN EQUATORIAL ORBIT 

As we have already see, the orbital equations (26) have both first 
integrals (40) and (53), Ox3 being the axis of  the massive body. 

Let us now assume that the body has not only an axis of  symmetry but 
also an equatorial plane of  symmetry (x3 = 0). Then these two integrals are 
enough to determine an equatorial orbit. So, putting r = R, the expressions 
(40) and (53) are written in polar coordinates as follows: 

f'2+r2~2=2(E+ V)+2P-2Q-lOV2-12EV-3E2+O(K3) (54) 

rZq~ = h( 1 - 4 V) + 4(xl W2 - x2 W,) + O(K 5/2) (55) 

Then, doing the traditional change s c = 1/r  and taking into account that 
h = O(KI/2), we have from (55) 

d~: + ~  [h2( l_4V)2  
r2 2= a-7 

+8h(l-4V)(xlW2-x2Wl)+16(xlW2z-x2Wl) 2] (56) 

and carrying this expression to (54), it results 

h-212(E + V)+ 2P-2Q+6V2 +4EV-3E 2 
+ r  -'5= 

-h-3[16(E+ V)(xIW2-x2W~)]+O(K 2) (57) 
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or definitively 

where 

d4~/ = - F ( r  (58) 

F(~:) = r  h-212(E + V ) + 2 P _ 2 Q + 6 V 2 + 4 E V _ 3 E  2] 

+ h-3[16(E + V)(Xl W2- x2 W0] + O(K 2) (59) 

(58) is the equation of the wanted trajectory. Let us now study the 
advance of its apsidal line. 

As it is known, the inverse apsidal distances r r satisfy 

the apsidal angle is 

F ( ~ l )  = F(~:2) = 0, ~2>  so l>0  (60) 

where 

U = V -  me (66) 

Next, taking into account (60), we get 

r 1 6 2 1 6 2  r 1 6 2 1 6 2  (67) 

and hence 

a + ~, + ~2 = (B2 - B2) / (~z  - ~2) (68) 

b - ~,~2 = (s~,B2 - ( 2 B I ) / ( ( ,  - (z)  

f ~:2 
A,~ = [-F(r -'/2 d~ (61) 

and the advance of perihelion per revolution is 

e = 2A~b - 27r (62) 

In order to calculate the integral (61) we write F(~) in the form 

F(sC ) = ~:2+ ar  b - B(r (63) 

with 

a = - 2 m h  -2, b = - 2 E h - 2 >  0 (64) 

where m = S P d3x is the mass of the massive body. 
Then we have 

B(~:) = h - 2 1 2 U  + 2 P - 2 Q + 6 V 2  + 4 E V - 3 E  2 

- h - '  16(E + V ) ( x ,  W 2 - x 2 W , ) ] +  O(K 2) (65) 
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Finally, since F vanishes for ~: = c and s c = ~% we take out the factor 
( ( - ~ ) ( ~ : -~ %)  and, eliminating a and b, we write F(s  c) in the form 

where 

F(~:) = (~ - ~:t) (~: - ~%)[1 - G(( ) ]  (69) 

( B  - B , ) ( ~ : -  ~2) - ( B  - B 2 ) ( ~ -  ~ l )  
G(~:) = (70) 

( ~ -  ~ , ) ( ~ -  ~2) (~ ,  - ~) 

As can be seen, the function G has no singularities in the ends of the 
interval (sol, ~2). So we can write the integral (61) in the following form: 

Ar = [(so2- ~)(sc- ~:l)]-'/Z[l - G(sC)] -~/2 ds c (71) 
~t 

This is the general expression for the advance of perihelion of an 
equatorial orbit in the field considered. Now, in order to obtain actual 
results, let us add supplementary assumptions. 

First we assume the generating body is nearly spherical, that is to say, 
that the deviation with respect to sphericity is O(K). In this case we may 
expand V in the usual form 

V = m~+/[.L3~ 3 "q- ~ 5 ~  5 "}-" " " (72) 

where Iz3 is the quadr!pole potential and /xs, . . .  are potentials of higher 
order. Second, we assume that the potentials due to stress and rotation are, 
in the equatorial p l a ~ ;  almost inversely proportional to the distance, i.e% 

P = p ~ +  O(K3), O=q,~+O(K 3 ) (73) 

where p =cons t an t=  O(k 2) and q = c o n s t a n t =  O(K2). Then, accordingly 
with (72), we have 

U =/z3~ :3 +/xS~ :s + . . . .  O(K 2) (74) 

Carrying now (73) and (74) to (65), it results in 

B(~:) = h-2(2/x3 so3 + 2/.~5s c5 + 2p~:- 2q~: + 6m2~ :2 

+4Em~-3E2-h-18EJ3se2"h-18mJ3~3)+O(K 2) (75) 

and hence we have 

B(s c) = bo+ b,sC+ b2sC2+ b3sC3+ �9 �9 �9 + O(K 2) (76) 
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where 
bo = - 3 E 2 h  -2 

bl = 2h-2(p - q + 2 m E )  

b2 = 6 m 2 h  -2 - 8 E  J3 h-3 

b 3 = 2/x3h -2 - 8 m  j3 h-3 

(77) 

Now, as the coefficients (77) are O(K), we have that B and G are 
O(K). Thus, expanding G by the binomial theorem and taking into account 
(62) we see that the advance of perihelion is 

I f  2 
e = [(~:2 - ~:)(~:- ( ~ ) ] - l / 2 G ( ( ) d ~  + O(K2) (78) 

1 

Since G is linear in B, from (78) we deduce 

e = eobo+ e~b] + e2b2+ 63b3 -F" �9 �9 + O ( K  2) (79) 

where 

e 2 n n 
E n ~-- -  [ ( ~ 2 - - ( ) ( ~ - - ~ 1 ) ]  - 1 / 2 ( ~  -sc~')(~z-~:2)-(~:"-sc2)(~:-sC,)ds c 

, ( ~  - -  ~ 1 ) ( ~ - -  ~ 2 ) ( ~ 1  - -  ~ 2 )  

(8o) 
The result of these integrals for n = 0, 1, 2 and 3 is 

e o = 0  , e l = 0  , e2 = 7r, e 3 = 3 7 r m h - 2 + O ( K )  (81) 

So, carrying these values to (73) and taking into account (77), we have finally 

e --- 67rm2h - 2 -  8 7 r E J 3 h - 3 + 6 7 r m t x 3 h - 4 - 2 4 r r m 2 j 3 h - 5 + .  �9 �9 + O(K 2) (82) 

In this global expression we see in the first term the relativistic advance for 
the Schwarzschild field. The second and fourth terms are the relativistic 
advances due to the rotation of the massive body and the third term is the 
Newtonian advance due to its oblateness. The remaining terms, not evalu- 
ated explicitly in (82), are Newtonian advances due to higher moments. As 
it is seen, under the stated assumptions, all terms shown in (82) are O(K), 
i.e., of  the same order of  the mass of  the massive body. 
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